\(\int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx\) [237]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 118 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {7}{16} a^2 c^4 x+\frac {7 a^2 c^4 \cos ^5(e+f x)}{30 f}+\frac {7 a^2 c^4 \cos (e+f x) \sin (e+f x)}{16 f}+\frac {7 a^2 c^4 \cos ^3(e+f x) \sin (e+f x)}{24 f}+\frac {a^2 \cos ^5(e+f x) \left (c^4-c^4 \sin (e+f x)\right )}{6 f} \]

[Out]

7/16*a^2*c^4*x+7/30*a^2*c^4*cos(f*x+e)^5/f+7/16*a^2*c^4*cos(f*x+e)*sin(f*x+e)/f+7/24*a^2*c^4*cos(f*x+e)^3*sin(
f*x+e)/f+1/6*a^2*cos(f*x+e)^5*(c^4-c^4*sin(f*x+e))/f

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {2815, 2757, 2748, 2715, 8} \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {7 a^2 c^4 \cos ^5(e+f x)}{30 f}+\frac {a^2 \cos ^5(e+f x) \left (c^4-c^4 \sin (e+f x)\right )}{6 f}+\frac {7 a^2 c^4 \sin (e+f x) \cos ^3(e+f x)}{24 f}+\frac {7 a^2 c^4 \sin (e+f x) \cos (e+f x)}{16 f}+\frac {7}{16} a^2 c^4 x \]

[In]

Int[(a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^4,x]

[Out]

(7*a^2*c^4*x)/16 + (7*a^2*c^4*Cos[e + f*x]^5)/(30*f) + (7*a^2*c^4*Cos[e + f*x]*Sin[e + f*x])/(16*f) + (7*a^2*c
^4*Cos[e + f*x]^3*Sin[e + f*x])/(24*f) + (a^2*Cos[e + f*x]^5*(c^4 - c^4*Sin[e + f*x]))/(6*f)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2748

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b)*((g*Co
s[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x
] && (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2757

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m + p))), x] + Dist[a*((2*m + p - 1)/(m + p)), Int
[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2,
0] && GtQ[m, 0] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \left (a^2 c^2\right ) \int \cos ^4(e+f x) (c-c \sin (e+f x))^2 \, dx \\ & = \frac {a^2 \cos ^5(e+f x) \left (c^4-c^4 \sin (e+f x)\right )}{6 f}+\frac {1}{6} \left (7 a^2 c^3\right ) \int \cos ^4(e+f x) (c-c \sin (e+f x)) \, dx \\ & = \frac {7 a^2 c^4 \cos ^5(e+f x)}{30 f}+\frac {a^2 \cos ^5(e+f x) \left (c^4-c^4 \sin (e+f x)\right )}{6 f}+\frac {1}{6} \left (7 a^2 c^4\right ) \int \cos ^4(e+f x) \, dx \\ & = \frac {7 a^2 c^4 \cos ^5(e+f x)}{30 f}+\frac {7 a^2 c^4 \cos ^3(e+f x) \sin (e+f x)}{24 f}+\frac {a^2 \cos ^5(e+f x) \left (c^4-c^4 \sin (e+f x)\right )}{6 f}+\frac {1}{8} \left (7 a^2 c^4\right ) \int \cos ^2(e+f x) \, dx \\ & = \frac {7 a^2 c^4 \cos ^5(e+f x)}{30 f}+\frac {7 a^2 c^4 \cos (e+f x) \sin (e+f x)}{16 f}+\frac {7 a^2 c^4 \cos ^3(e+f x) \sin (e+f x)}{24 f}+\frac {a^2 \cos ^5(e+f x) \left (c^4-c^4 \sin (e+f x)\right )}{6 f}+\frac {1}{16} \left (7 a^2 c^4\right ) \int 1 \, dx \\ & = \frac {7}{16} a^2 c^4 x+\frac {7 a^2 c^4 \cos ^5(e+f x)}{30 f}+\frac {7 a^2 c^4 \cos (e+f x) \sin (e+f x)}{16 f}+\frac {7 a^2 c^4 \cos ^3(e+f x) \sin (e+f x)}{24 f}+\frac {a^2 \cos ^5(e+f x) \left (c^4-c^4 \sin (e+f x)\right )}{6 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.92 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.67 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {a^2 c^4 (420 e+420 f x+240 \cos (e+f x)+120 \cos (3 (e+f x))+24 \cos (5 (e+f x))+255 \sin (2 (e+f x))+15 \sin (4 (e+f x))-5 \sin (6 (e+f x)))}{960 f} \]

[In]

Integrate[(a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^4,x]

[Out]

(a^2*c^4*(420*e + 420*f*x + 240*Cos[e + f*x] + 120*Cos[3*(e + f*x)] + 24*Cos[5*(e + f*x)] + 255*Sin[2*(e + f*x
)] + 15*Sin[4*(e + f*x)] - 5*Sin[6*(e + f*x)]))/(960*f)

Maple [A] (verified)

Time = 2.36 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.69

method result size
parallelrisch \(\frac {c^{4} a^{2} \left (420 f x +240 \cos \left (f x +e \right )-5 \sin \left (6 f x +6 e \right )+24 \cos \left (5 f x +5 e \right )+15 \sin \left (4 f x +4 e \right )+120 \cos \left (3 f x +3 e \right )+255 \sin \left (2 f x +2 e \right )+384\right )}{960 f}\) \(81\)
risch \(\frac {7 a^{2} c^{4} x}{16}+\frac {c^{4} a^{2} \cos \left (f x +e \right )}{4 f}-\frac {c^{4} a^{2} \sin \left (6 f x +6 e \right )}{192 f}+\frac {c^{4} a^{2} \cos \left (5 f x +5 e \right )}{40 f}+\frac {c^{4} a^{2} \sin \left (4 f x +4 e \right )}{64 f}+\frac {c^{4} a^{2} \cos \left (3 f x +3 e \right )}{8 f}+\frac {17 c^{4} a^{2} \sin \left (2 f x +2 e \right )}{64 f}\) \(128\)
derivativedivides \(\frac {c^{4} a^{2} \left (-\frac {\left (\sin ^{5}\left (f x +e \right )+\frac {5 \left (\sin ^{3}\left (f x +e \right )\right )}{4}+\frac {15 \sin \left (f x +e \right )}{8}\right ) \cos \left (f x +e \right )}{6}+\frac {5 f x}{16}+\frac {5 e}{16}\right )+\frac {2 c^{4} a^{2} \left (\frac {8}{3}+\sin ^{4}\left (f x +e \right )+\frac {4 \left (\sin ^{2}\left (f x +e \right )\right )}{3}\right ) \cos \left (f x +e \right )}{5}-c^{4} a^{2} \left (-\frac {\left (\sin ^{3}\left (f x +e \right )+\frac {3 \sin \left (f x +e \right )}{2}\right ) \cos \left (f x +e \right )}{4}+\frac {3 f x}{8}+\frac {3 e}{8}\right )-\frac {4 c^{4} a^{2} \left (2+\sin ^{2}\left (f x +e \right )\right ) \cos \left (f x +e \right )}{3}-c^{4} a^{2} \left (-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{2}+\frac {f x}{2}+\frac {e}{2}\right )+2 a^{2} c^{4} \cos \left (f x +e \right )+c^{4} a^{2} \left (f x +e \right )}{f}\) \(211\)
default \(\frac {c^{4} a^{2} \left (-\frac {\left (\sin ^{5}\left (f x +e \right )+\frac {5 \left (\sin ^{3}\left (f x +e \right )\right )}{4}+\frac {15 \sin \left (f x +e \right )}{8}\right ) \cos \left (f x +e \right )}{6}+\frac {5 f x}{16}+\frac {5 e}{16}\right )+\frac {2 c^{4} a^{2} \left (\frac {8}{3}+\sin ^{4}\left (f x +e \right )+\frac {4 \left (\sin ^{2}\left (f x +e \right )\right )}{3}\right ) \cos \left (f x +e \right )}{5}-c^{4} a^{2} \left (-\frac {\left (\sin ^{3}\left (f x +e \right )+\frac {3 \sin \left (f x +e \right )}{2}\right ) \cos \left (f x +e \right )}{4}+\frac {3 f x}{8}+\frac {3 e}{8}\right )-\frac {4 c^{4} a^{2} \left (2+\sin ^{2}\left (f x +e \right )\right ) \cos \left (f x +e \right )}{3}-c^{4} a^{2} \left (-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{2}+\frac {f x}{2}+\frac {e}{2}\right )+2 a^{2} c^{4} \cos \left (f x +e \right )+c^{4} a^{2} \left (f x +e \right )}{f}\) \(211\)
parts \(a^{2} c^{4} x +\frac {c^{4} a^{2} \left (-\frac {\left (\sin ^{5}\left (f x +e \right )+\frac {5 \left (\sin ^{3}\left (f x +e \right )\right )}{4}+\frac {15 \sin \left (f x +e \right )}{8}\right ) \cos \left (f x +e \right )}{6}+\frac {5 f x}{16}+\frac {5 e}{16}\right )}{f}+\frac {2 c^{4} a^{2} \cos \left (f x +e \right )}{f}-\frac {c^{4} a^{2} \left (-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{2}+\frac {f x}{2}+\frac {e}{2}\right )}{f}-\frac {4 c^{4} a^{2} \left (2+\sin ^{2}\left (f x +e \right )\right ) \cos \left (f x +e \right )}{3 f}-\frac {c^{4} a^{2} \left (-\frac {\left (\sin ^{3}\left (f x +e \right )+\frac {3 \sin \left (f x +e \right )}{2}\right ) \cos \left (f x +e \right )}{4}+\frac {3 f x}{8}+\frac {3 e}{8}\right )}{f}+\frac {2 c^{4} a^{2} \left (\frac {8}{3}+\sin ^{4}\left (f x +e \right )+\frac {4 \left (\sin ^{2}\left (f x +e \right )\right )}{3}\right ) \cos \left (f x +e \right )}{5 f}\) \(221\)
norman \(\frac {\frac {4 c^{4} a^{2} \left (\tan ^{8}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f}+\frac {8 c^{4} a^{2} \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f}+\frac {4 c^{4} a^{2}}{5 f}+\frac {7 a^{2} c^{4} x}{16}+\frac {4 c^{4} a^{2} \left (\tan ^{10}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f}+\frac {8 c^{4} a^{2} \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f}+\frac {4 c^{4} a^{2} \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{5 f}+\frac {21 a^{2} c^{4} x \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{8}+\frac {105 a^{2} c^{4} x \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{16}+\frac {35 a^{2} c^{4} x \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{4}+\frac {105 a^{2} c^{4} x \left (\tan ^{8}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{16}+\frac {21 a^{2} c^{4} x \left (\tan ^{10}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{8}+\frac {7 a^{2} c^{4} x \left (\tan ^{12}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{16}+\frac {9 c^{4} a^{2} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{8 f}+\frac {89 c^{4} a^{2} \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{24 f}-\frac {11 c^{4} a^{2} \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{4 f}+\frac {11 c^{4} a^{2} \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{4 f}-\frac {89 c^{4} a^{2} \left (\tan ^{9}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{24 f}-\frac {9 c^{4} a^{2} \left (\tan ^{11}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{8 f}}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{6}}\) \(398\)

[In]

int((a+a*sin(f*x+e))^2*(c-c*sin(f*x+e))^4,x,method=_RETURNVERBOSE)

[Out]

1/960*c^4*a^2*(420*f*x+240*cos(f*x+e)-5*sin(6*f*x+6*e)+24*cos(5*f*x+5*e)+15*sin(4*f*x+4*e)+120*cos(3*f*x+3*e)+
255*sin(2*f*x+2*e)+384)/f

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.74 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {96 \, a^{2} c^{4} \cos \left (f x + e\right )^{5} + 105 \, a^{2} c^{4} f x - 5 \, {\left (8 \, a^{2} c^{4} \cos \left (f x + e\right )^{5} - 14 \, a^{2} c^{4} \cos \left (f x + e\right )^{3} - 21 \, a^{2} c^{4} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{240 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^2*(c-c*sin(f*x+e))^4,x, algorithm="fricas")

[Out]

1/240*(96*a^2*c^4*cos(f*x + e)^5 + 105*a^2*c^4*f*x - 5*(8*a^2*c^4*cos(f*x + e)^5 - 14*a^2*c^4*cos(f*x + e)^3 -
 21*a^2*c^4*cos(f*x + e))*sin(f*x + e))/f

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 530 vs. \(2 (112) = 224\).

Time = 0.40 (sec) , antiderivative size = 530, normalized size of antiderivative = 4.49 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\begin {cases} \frac {5 a^{2} c^{4} x \sin ^{6}{\left (e + f x \right )}}{16} + \frac {15 a^{2} c^{4} x \sin ^{4}{\left (e + f x \right )} \cos ^{2}{\left (e + f x \right )}}{16} - \frac {3 a^{2} c^{4} x \sin ^{4}{\left (e + f x \right )}}{8} + \frac {15 a^{2} c^{4} x \sin ^{2}{\left (e + f x \right )} \cos ^{4}{\left (e + f x \right )}}{16} - \frac {3 a^{2} c^{4} x \sin ^{2}{\left (e + f x \right )} \cos ^{2}{\left (e + f x \right )}}{4} - \frac {a^{2} c^{4} x \sin ^{2}{\left (e + f x \right )}}{2} + \frac {5 a^{2} c^{4} x \cos ^{6}{\left (e + f x \right )}}{16} - \frac {3 a^{2} c^{4} x \cos ^{4}{\left (e + f x \right )}}{8} - \frac {a^{2} c^{4} x \cos ^{2}{\left (e + f x \right )}}{2} + a^{2} c^{4} x - \frac {11 a^{2} c^{4} \sin ^{5}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{16 f} + \frac {2 a^{2} c^{4} \sin ^{4}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{f} - \frac {5 a^{2} c^{4} \sin ^{3}{\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{6 f} + \frac {5 a^{2} c^{4} \sin ^{3}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{8 f} + \frac {8 a^{2} c^{4} \sin ^{2}{\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{3 f} - \frac {4 a^{2} c^{4} \sin ^{2}{\left (e + f x \right )} \cos {\left (e + f x \right )}}{f} - \frac {5 a^{2} c^{4} \sin {\left (e + f x \right )} \cos ^{5}{\left (e + f x \right )}}{16 f} + \frac {3 a^{2} c^{4} \sin {\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{8 f} + \frac {a^{2} c^{4} \sin {\left (e + f x \right )} \cos {\left (e + f x \right )}}{2 f} + \frac {16 a^{2} c^{4} \cos ^{5}{\left (e + f x \right )}}{15 f} - \frac {8 a^{2} c^{4} \cos ^{3}{\left (e + f x \right )}}{3 f} + \frac {2 a^{2} c^{4} \cos {\left (e + f x \right )}}{f} & \text {for}\: f \neq 0 \\x \left (a \sin {\left (e \right )} + a\right )^{2} \left (- c \sin {\left (e \right )} + c\right )^{4} & \text {otherwise} \end {cases} \]

[In]

integrate((a+a*sin(f*x+e))**2*(c-c*sin(f*x+e))**4,x)

[Out]

Piecewise((5*a**2*c**4*x*sin(e + f*x)**6/16 + 15*a**2*c**4*x*sin(e + f*x)**4*cos(e + f*x)**2/16 - 3*a**2*c**4*
x*sin(e + f*x)**4/8 + 15*a**2*c**4*x*sin(e + f*x)**2*cos(e + f*x)**4/16 - 3*a**2*c**4*x*sin(e + f*x)**2*cos(e
+ f*x)**2/4 - a**2*c**4*x*sin(e + f*x)**2/2 + 5*a**2*c**4*x*cos(e + f*x)**6/16 - 3*a**2*c**4*x*cos(e + f*x)**4
/8 - a**2*c**4*x*cos(e + f*x)**2/2 + a**2*c**4*x - 11*a**2*c**4*sin(e + f*x)**5*cos(e + f*x)/(16*f) + 2*a**2*c
**4*sin(e + f*x)**4*cos(e + f*x)/f - 5*a**2*c**4*sin(e + f*x)**3*cos(e + f*x)**3/(6*f) + 5*a**2*c**4*sin(e + f
*x)**3*cos(e + f*x)/(8*f) + 8*a**2*c**4*sin(e + f*x)**2*cos(e + f*x)**3/(3*f) - 4*a**2*c**4*sin(e + f*x)**2*co
s(e + f*x)/f - 5*a**2*c**4*sin(e + f*x)*cos(e + f*x)**5/(16*f) + 3*a**2*c**4*sin(e + f*x)*cos(e + f*x)**3/(8*f
) + a**2*c**4*sin(e + f*x)*cos(e + f*x)/(2*f) + 16*a**2*c**4*cos(e + f*x)**5/(15*f) - 8*a**2*c**4*cos(e + f*x)
**3/(3*f) + 2*a**2*c**4*cos(e + f*x)/f, Ne(f, 0)), (x*(a*sin(e) + a)**2*(-c*sin(e) + c)**4, True))

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.77 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {128 \, {\left (3 \, \cos \left (f x + e\right )^{5} - 10 \, \cos \left (f x + e\right )^{3} + 15 \, \cos \left (f x + e\right )\right )} a^{2} c^{4} + 1280 \, {\left (\cos \left (f x + e\right )^{3} - 3 \, \cos \left (f x + e\right )\right )} a^{2} c^{4} + 5 \, {\left (4 \, \sin \left (2 \, f x + 2 \, e\right )^{3} + 60 \, f x + 60 \, e + 9 \, \sin \left (4 \, f x + 4 \, e\right ) - 48 \, \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} c^{4} - 30 \, {\left (12 \, f x + 12 \, e + \sin \left (4 \, f x + 4 \, e\right ) - 8 \, \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} c^{4} - 240 \, {\left (2 \, f x + 2 \, e - \sin \left (2 \, f x + 2 \, e\right )\right )} a^{2} c^{4} + 960 \, {\left (f x + e\right )} a^{2} c^{4} + 1920 \, a^{2} c^{4} \cos \left (f x + e\right )}{960 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^2*(c-c*sin(f*x+e))^4,x, algorithm="maxima")

[Out]

1/960*(128*(3*cos(f*x + e)^5 - 10*cos(f*x + e)^3 + 15*cos(f*x + e))*a^2*c^4 + 1280*(cos(f*x + e)^3 - 3*cos(f*x
 + e))*a^2*c^4 + 5*(4*sin(2*f*x + 2*e)^3 + 60*f*x + 60*e + 9*sin(4*f*x + 4*e) - 48*sin(2*f*x + 2*e))*a^2*c^4 -
 30*(12*f*x + 12*e + sin(4*f*x + 4*e) - 8*sin(2*f*x + 2*e))*a^2*c^4 - 240*(2*f*x + 2*e - sin(2*f*x + 2*e))*a^2
*c^4 + 960*(f*x + e)*a^2*c^4 + 1920*a^2*c^4*cos(f*x + e))/f

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.08 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {7}{16} \, a^{2} c^{4} x + \frac {a^{2} c^{4} \cos \left (5 \, f x + 5 \, e\right )}{40 \, f} + \frac {a^{2} c^{4} \cos \left (3 \, f x + 3 \, e\right )}{8 \, f} + \frac {a^{2} c^{4} \cos \left (f x + e\right )}{4 \, f} - \frac {a^{2} c^{4} \sin \left (6 \, f x + 6 \, e\right )}{192 \, f} + \frac {a^{2} c^{4} \sin \left (4 \, f x + 4 \, e\right )}{64 \, f} + \frac {17 \, a^{2} c^{4} \sin \left (2 \, f x + 2 \, e\right )}{64 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^2*(c-c*sin(f*x+e))^4,x, algorithm="giac")

[Out]

7/16*a^2*c^4*x + 1/40*a^2*c^4*cos(5*f*x + 5*e)/f + 1/8*a^2*c^4*cos(3*f*x + 3*e)/f + 1/4*a^2*c^4*cos(f*x + e)/f
 - 1/192*a^2*c^4*sin(6*f*x + 6*e)/f + 1/64*a^2*c^4*sin(4*f*x + 4*e)/f + 17/64*a^2*c^4*sin(2*f*x + 2*e)/f

Mupad [B] (verification not implemented)

Time = 8.46 (sec) , antiderivative size = 284, normalized size of antiderivative = 2.41 \[ \int (a+a \sin (e+f x))^2 (c-c \sin (e+f x))^4 \, dx=\frac {a^2\,c^4\,\left (105\,e+270\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+192\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+890\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3+1920\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4-660\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5+1920\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^6+660\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^7+960\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^8-890\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^9+960\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{10}-270\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{11}+105\,f\,x+630\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (e+f\,x\right )+1575\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (e+f\,x\right )+2100\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^6\,\left (e+f\,x\right )+1575\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^8\,\left (e+f\,x\right )+630\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{10}\,\left (e+f\,x\right )+105\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{12}\,\left (e+f\,x\right )+192\right )}{240\,f\,{\left ({\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+1\right )}^6} \]

[In]

int((a + a*sin(e + f*x))^2*(c - c*sin(e + f*x))^4,x)

[Out]

(a^2*c^4*(105*e + 270*tan(e/2 + (f*x)/2) + 192*tan(e/2 + (f*x)/2)^2 + 890*tan(e/2 + (f*x)/2)^3 + 1920*tan(e/2
+ (f*x)/2)^4 - 660*tan(e/2 + (f*x)/2)^5 + 1920*tan(e/2 + (f*x)/2)^6 + 660*tan(e/2 + (f*x)/2)^7 + 960*tan(e/2 +
 (f*x)/2)^8 - 890*tan(e/2 + (f*x)/2)^9 + 960*tan(e/2 + (f*x)/2)^10 - 270*tan(e/2 + (f*x)/2)^11 + 105*f*x + 630
*tan(e/2 + (f*x)/2)^2*(e + f*x) + 1575*tan(e/2 + (f*x)/2)^4*(e + f*x) + 2100*tan(e/2 + (f*x)/2)^6*(e + f*x) +
1575*tan(e/2 + (f*x)/2)^8*(e + f*x) + 630*tan(e/2 + (f*x)/2)^10*(e + f*x) + 105*tan(e/2 + (f*x)/2)^12*(e + f*x
) + 192))/(240*f*(tan(e/2 + (f*x)/2)^2 + 1)^6)